本站试运行中,有任何建议或bug反馈,请发信到qiushan@taolang.club;看这里了解本站是做什么的,以及籍海淘浪有什么寓意

知道了

本書目錄

本篇关键词 词云图

卷三十五 志第十一 曆五 大統曆法三上

大統曆法三上 推步

大統推步,悉本授時,惟去消長而已。然通軌諸捷法,實為布算所須,其間次序,亦有與曆經微別者。如氣朔發斂,授時原分二章,今合為一。授時盈縮差在日躔,遲疾差在月離,定朔、經朔離為二處。今則經朔後,即求定朔,於用殊便。其目七:曰氣朔,曰日躔,曰月離,曰中星,曰交食,曰五星,曰四餘。

步氣朔發斂附

洪武十七年甲子歲為元。

歲周三百六十五萬二千四百二十五分,半之為歲周,四分之為氣象限,二十四分之為氣策。

日周一萬。

氣應五十五萬〇三百七十五分。置距算一百〇四,求得中積三億七千六百一十九萬九千七百七十五分,加辛巳氣應五十五萬〇六百分,得通積三億七千六百七十五萬〇三百七十五分,滿紀法六十去之,餘為大統氣應。

閏應一十八萬二千〇百七十〇分一十八秒。置中積,加辛巳閏應二十〇萬二千〇五十分,得閏積三億七千六百四十〇萬一千八百二十五分,滿朔實去之,餘為大統閏應。

轉應二十〇萬九千六百九十〇分。置中積,加辛巳轉應一十三萬〇二百〇五分,共得三億七千六百三十二萬九千九百八十分,滿轉終去之,餘為大統轉應。

交應一十一萬五千一百〇五分〇八秒。置中積加辛巳交應二十六萬〇三百八十八分,共得三億七千六百四十六萬〇一百六十三分,滿交終去之,餘為大統交應。

授時曆既成之後,閏轉交三應數,旋有改定,故元志曆經閏應二十〇萬一千八百五十分,而通軌載閏應二十〇萬二千〇五十分,實加二百分,是當時經朔改早二刻也。曆經轉應一十三萬一千九百〇四分,通軌載轉應一十三萬〇二百〇五分,實減一千六百九十九分,是入轉改遲一十七刻弱也。曆經交應二十六萬〇一百八十七分八十六秒,通軌交應二十六萬〇三百八十八分,實加二百分一十四秒,是正交改早二刻強也。或以通軌辛巳三應,與元志互異,目為元統所定,非也。夫改憲必由測驗,即當具詳始末,何反追改授時曆,自沒其勤乎?是故通軌所述者,乃授時續定之數,而曆經所存,則其未定之初藁也。

通餘五萬二千四百二十五分。

朔策二十九萬五千三百〇五分九十三秒,半之為望策,又半之為弦策。

通閏一十〇萬八千七百五十三分八十四秒。

月閏九千〇百六十二分八十二秒。

閏限一十八萬六千五百五十二分〇九秒。

盈初縮末限八十八萬九千〇百九十二分二十五秒。

縮初盈末限九十三萬七千一百二十〇分二十五秒。

轉終二十七萬五千五百四十六分,半之為轉中。

朔轉差一萬九千七百五十九分九十三秒。

日轉限一十二限二十。

轉中限一百六十八限〇八三〇六〇。

朔轉限二十四限一〇七一一四六。

弦轉限九十〇限〇六八三〇八六五。

交終二十七萬二千一百二十二分二十四秒。

朔交差二萬三千一百八十三分六十九秒。

氣盈二千一百八十四分三十七秒五十微。

朔虛四千六百九十四分〇七秒。

沒限七千八百一十五分六十二秒五十微。

盈策九萬六千六百九十五分二十八秒。

虛策二萬九千一百〇四分二十二秒。

土王策三萬〇四百三十六分八十七秒五十微。

宿策一萬五千三百〇五分九十三秒。

紀法六十萬。

推天正冬至 置距洪武甲子積年減一,以歲周乘之為中積,加氣應為通積,滿紀法去之,至不滿之數,為天正冬至。以萬為日,命甲子算外,為冬至日辰。累加通餘,即得次年天正冬至

推天正閏餘 置中積,加閏應,滿朔策去之,至不滿之數,為天正閏餘。累加通閏,即得次年天正閏餘。

推天正經冬至,減閏餘,遇不及減,加紀法減之,為天正經朔。無閏,加五十四萬三六七一一六。有閏,加二十三萬八九七七〇九。滿紀法仍去之,即得次年天正經朔。視天正閏餘在閏限已上,其年有閏月

推天正盈縮 置半歲周,內減其年閏餘全分,餘為所求天正縮曆。如逕求次年者,於天正縮曆內減通閏,即得。減後,視在一百五十三日〇九已下者,復加朔實,為次年天正縮曆。

推天正遲疾 置中積,加轉應,減去其年閏餘全分,餘滿轉終去之,即天正入轉。視在轉中已下為疾曆,已上去之為遲曆。如逕求次年者,加二十三萬七一一九一六,經閏再加轉差,皆滿轉終去之,遲疾各仍其舊。若滿轉中去之,為遲疾相代。

推天正入交 置中積,減閏餘,加交應,滿交終去之,即天正入交汎日。如逕求次年者,加六千〇八十二分〇四秒,經閏加二萬九千二百六十五分七十三秒,皆滿交終仍去之,即得。

推各月經朔及弦望 置天正經朔,加二朔策,滿紀法去之,即得正月經朔。以弦策累加之,去紀法,即得弦望及次朔。

推各恒氣 置天正冬至,加三氣策,滿紀法去之,即得立春恒日。以氣策累加之,去紀法,即得二十四氣恒日。

推閏在何月朔策,以有閏之年閏餘減之,餘為實,以月閏為法而一,得數命起天正次月算外,即得所閏之月。閏有進退,仍以定朔無中氣為定。

推各月盈縮曆 置天正縮曆,加二朔策,去半歲周,即得正月經朔下盈曆。累加弦策,各得弦望及次朔,如滿半歲周去之交縮,滿半歲周又去之即復交盈。

推初末限 視盈曆在盈初縮末限已下,縮曆在縮初盈末限已下,各為初。已上用減半歲周為末。

推盈縮差 置初末曆小餘,以立成內所有盈縮加分乘之為實,日周一萬為法除之,得數以加其下盈縮積,即盈縮差。

推各月遲疾曆 置天正經朔遲疾曆,加二轉差,得正月經朔下遲疾曆。累加弦策,得弦望及次朔,皆滿轉中去之,為遲疾相代。

推遲疾限 各置遲疾曆,以日轉限乘之,即得限數。以弦轉限累加之,滿轉中限去之,即各弦望及次朔限。如逕求次月,以朔轉限加之,亦滿轉中去之,即得。

求遲疾差 置遲疾曆,以立成日率減之,餘以其下損益分乘之為實,八百二十分為法除之,得數以加其下遲疾積,即遲疾差。

推加減差 視經朔弦望下所得盈縮差、遲疾差,以盈遇遲、縮遇疾為同相併,盈遇疾、縮遇遲為異相較,各以八百二十分乘之為實,再以遲疾限行度內減去八百二十分,為定限度為法,法除實為加減差。盈遲為加,縮疾為減,異名相較者,盈多於疾為加,疾多於盈為減,縮多於遲減,遲多於縮加。

推定朔弦望 各置經朔弦望,以加減差加減之,即為定日。視定朔干名,與後朔同者月大,不同者月小,內無中氣者為閏月。其弦望在立成相同日日出分已下者,則退一日命之。

推各月入交 置天正經朔入交汎日加二交差,得正月經朔下入交汎日。累加交望,滿交終去之,即得各月下入交汎日。逕求次月,加交差即得。

推土王用事穀雨大暑霜降大寒恒氣日,減土王策,如不及減,加紀法減之,即各得土王用事日。

推發斂加時 各置所推定朔弦望及恒氣之小餘,以十二乘之,滿萬為時,命起子正。滿五千,又進一時,命起子初。算外得時不滿者,以一千二百除之為刻,命起初刻。初正時之刻,皆以初一二三四為序,於算外命之。

按古曆及授時,皆以發斂為一章。發斂云者,日道發南斂北之細數也,而加時附焉,則又所以紀發斂之辰刻,故曰發斂加時也。大統取其便算,故合發斂與氣朔共為一章,或以乘除疏發斂,非其質矣。

推盈日 視恒氣小餘,在沒限已上,為有盈之氣。置策餘一萬〇一四五六二五,以有盈之氣小餘減之,餘以六十八分六六乘之,得數以加恒氣大餘,滿紀法去之,命甲子算外,得盈日。求次盈。置盈日及分秒,以盈策加之,又去紀法,即得。

推虛日 視經朔小餘在朔虛已下,為有虛之朔。置有虛之朔小餘,以六十三分九一乘之,得數以加經朔大餘,滿紀法去之,命甲子算外為虛日。求次虛。置虛日及分秒,以虛策加之,又去紀法,即得。

推直宿 置通積,減閏應,以宿會二十八萬累去之,餘命起翼宿算外,得天正經朔直宿。置天正經宿直宿,加兩宿策,為正月經朔直宿。以宿策累加,得各月經朔直宿。再以各月朔下加減差加減之,為定朔直宿。

步日躔

周天三百六十五度二十五分七十五秒,半之為半周天,又半之為象限。

歲差一分五十秒。

周應三百一十五度一十分七十五秒。按此係至元辛巳之周應,乃自虛七度至箕十度之數也。洪武甲子相距一百四年歲差已退天一度五十四分五十秒,而周應仍用舊數,殆傳習之誤耳。

推天正冬至日躔赤道宿次 置中積,加周應,滿周天去之,不盡,起虛七度,依各宿次去之,即冬至加時赤道日度。如求次年,累減歲差,即得。

赤道度

虛八九五七五危十五四〇室十七一〇壁八六〇奎十六六〇婁十一八〇胃十五六〇
昴十一三〇畢十七四〇觜初〇五參十一一〇井三十三三〇鬼二二〇柳十三三〇
星六三〇張十七二五翼十八七五軫十七三〇角十二一〇亢九二〇氐十六三〇
房五六〇心六五〇尾十九一〇箕十四〇斗二十五二〇牛七二〇女十一三五

推天正冬至日躔黃道宿次冬至加時赤道日度,以至後赤道積度減之,餘以黃道率乘之。如赤道率而一,得數以加黃道積度,即冬至加時黃道日度。

黃道度

箕九五九斗二十三四七牛六九〇女十一一二虛九〇〇七五危十五九五室十八三二
壁九三四奎十七八七婁十二三六胃十五八一昴十一〇八畢十六五〇觜初〇五
參十二八井三十一〇三鬼二一一柳十三星六三一張十七七九翼二十〇九
軫十八七五角十二八七亢九五六氐十六四〇房五四八心六二七尾十七九五

推定象限度冬至加時赤道日度,與冬至加時黃道日度相減,為黃赤道差。以本年黃赤道差,與次年黃赤道差相減,餘以四而一,加入氣象限內,為定象限度。

推四正定氣日 置所推冬至分,即為冬正定氣,加盈初縮末限,滿紀法去之,餘為春正定氣。加縮初盈末限,去紀法,餘為夏正定氣。加縮初盈末限,去紀法,餘為秋正定氣。加盈初縮末限,去紀法,餘為次年冬正定氣。

推四正相距日 以前正定氣大餘,減次正定氣大餘,加六十日,得相距日。如次正氣不及減者,加六十日減之,再加六十日,為相距日。

推四正加時黃道積度冬至加時黃道日度,累加定象限度,各得四正加時黃道積度。

推四正加時減分 置四正定氣小餘,以其初日行度乘之,如日周而一,為各正加時減分。

冬正行一度〇五一〇八五。春正距夏正九十三日者,行〇度九九九七〇三,距九十四日者行一度。夏正行〇度九五一五一六。秋正距冬正八十八日者,行一度〇〇〇五〇五,距八十九日者行一度。

推四正夜半積度 置四正加時黃道積度,減去其加時減分,即得。

推四正夜半黃道宿次 置四正夜半黃道積度,滿黃道宿度去之,即得。

推四正夜半相距度 置次正夜半黃道積度,以前正夜半黃道積度減之,餘為兩正相距度,遇不及減者,加周天減之。

推四正行度加減日差 以相距度與相距日下行積度相減,餘如相距日而一,為日差。從相距度內減去行積度者為加,從行積度內減去相距度者為減。

秋正距冬至冬至距春正八十八日,行積度九十度四〇〇九,八十九日行積度九十一度四〇一四。春正距夏至夏至距秋正九十三日,行積度九十度五九九〇,九十四日行積度九十一度五九八七。

推每日夜半日度 置四正後每日行度,以日差加減之,為每日行定度。置四正夜半日度,以行定度每日加之,滿黃道宿度去之,即每日夜半日度。

黃道十二次宿度

危十二度六四九一,入娵訾,辰在亥。

奎一度七三六二,入降婁,辰在戌。

胃三度七四五六,入大梁,辰在酉。

畢六度八八〇五,入實沈,辰在申。

井八度三四九四,入鶉首,辰在未。

柳三度八六八〇,入鶉火,辰在午。

張十五度二六〇六,入鶉尾,辰在巳。

軫十度〇七九七,入壽星,辰在辰。

氐一度一四五二,入大火,辰在卯。

尾三度〇一一五,入析木,辰在寅。

斗三度七六八五,入星紀,辰在丑。

女二度〇六三八,入玄枵,辰在子。

推日躔黃道入十二次時刻 置入次宿度,以入次日夜半日度減之,餘以日周乘之,為實。以入次日夜半日度,與明日夜半日度相減,餘為法。實如法而一,得數,以發斂加時求之,即入次時刻。

步月離

月平行度一十三度三十六分八十七秒半。

周限三百三十六,半之為中限,又半之為初限。

限平行度一度〇九分六十二秒。

太陽限行八分二十秒。

上弦九十一度三十一分四十三秒太。

望一百八十二度六十二分八十七秒半。

下弦二百七十三度九十四分三十一秒少。

交終度三百六十三度七十九分三十四秒一九六。

朔平行度三百九十四度七八七一一五一六八七五。

推朔後平交日 置交終分,減天正經朔交汎分,為朔後平交日。如推次月,累減交差二日三一八三六九,得次月朔後平交日。不及減交差者,加交終減之,其交又在本月,為重交月朔後平交日。

推平交入轉遲疾曆 置經朔遲疾曆,加入朔後平交日為平交入轉。在轉中已下,其遲疾與經朔同,已上減去轉中疾交遲,遲交疾。如推次月,累減交轉差三千四百二十三分七六,即得。如不及減,加轉中減之,亦遲疾相代。

推平交入限遲疾差 置平交入轉遲疾曆,依步氣朔內,推遲疾限及遲疾差,即得。

推平交加減定差 置平交入限遲疾差,以日率八百二十分乘之,以所入遲疾限下行度而一,即得。在遲為加,在疾為減。

推經朔加時中積 置經朔盈縮曆,在盈曆即為加時中積,在縮曆加半歲周。如推次月,累加朔策,滿歲周去之,即各朔加時中積,命日為度。後交即注前交經朔加時中積。

推正交距冬至加時黃道積度及宿次 置朔後平交日,以月平行乘之為距後度,以加經朔加時中積,為各月正交距冬至加時黃道積度。加冬至加時黃道日度,以黃道積度鈐減之,至不滿宿次,即正交月離。如推次月,累減月平交朔差一度四六三一〇二。遇重交月,同次朔。

黃道積度鈐

箕九度五九斗三十三度〇六牛三十九度九六女五十一度〇八
虛六十度〇八七五危七十六度〇三七五室九十四度三五七五壁一百三度六九七五
奎一百二十一度五六七五婁一百三十三度九二七五胃一百四十九度七三七五昴一百六十度八一七五
畢一百七十七度三一七五觜一百七十七度三六七五參一百八十七度六四七五井二百一十八度六七七五
鬼二百二十度七八七五柳二百三十三度七八七五星 二百四十度〇九七五張二百五十七度八八七五
翼二百七十七度九七七五軫二百九十六度七二七五角 三百〇九度五九七五亢三百一十九度一五七五
氐三百三十五度五五七五房三百四十一度〇三七五心三百四十七度三〇七五尾三百六十五度二五七五

推正交日辰時刻 置朔後症交日,加經朔,去紀法,以平交定差加減之,其日命甲子算外,小餘依發斂加時求之,即得正交日辰時刻。如推次月,累加交終,滿紀去之。如遇重交,再加交終。

推四正赤道宿次冬至赤道日度,以氣象限累加之,滿赤道積度去之,為四正加時赤道日度。

赤道積度鈐

箕十度四斗三十五度六牛四十二度八女五十四度一五
虛六十三度一〇七五危七十八度五〇七五室九十五度六〇七五壁一百四度二〇七五
奎一百二十度八〇七五婁一百三十二度六〇七五胃一百四十八度二〇七五昴一百五十九度五〇七五
畢一百七十六度九〇七五觜一百七十六度九五七五參一百八十八度〇五七五井二百二十一度三五七五
鬼二百二十三度五五七五柳二百三十六度八五七五星二百四十三度一五七五張二百六十度四〇七五
翼二百七十九度一五七五軫二百九十六度四五七五角三百〇八度五五七五亢三百一十七度七五七五
氐三百三十四度〇五七五房三百三十九度六五七五心三百四十六度一五七五尾三百六十五度二五七五

推正交黃道在二至後初末限 置正交距冬至加時黃道積度,在半歲周已下為冬至後,已上減去半歲周,餘為夏至後。又視二至後度分,在氣象限已下為初限,已上用減半歲周,餘為末限。推次月者,若本月初限,則累減月平交朔差,餘為次月初限。不及減者,反減月平交朔差,餘為次月末限。若本月末限,則累加月平交朔差,為次月末限,至滿氣象限,以減半歲周,餘為次月初限。

推定差度 置初末限,以象極總差一分六〇五五〇八乘之,即為定差度。如推次月初限則累減,末限則累加,俱以極平差二十三分四九〇二加減之。

推距差度 置極差十四度六六,減去定差度,即得。求次月,以極平差加減之。

推定限度 置定差度,以定極總差一分六三七一〇七乘之,所得視正交在冬至後為減,夏至後為加,皆置九十八度加減之,即得。

推月道與赤道正交宿度 正交在冬至後,置春正赤道積度,以距差度初限加末限減之。在夏至後,置秋正赤道積度,以距差初限減末限加之。得數,滿赤道積度鈐去之,即得。

推月道與赤道正交後積度幷入初末限 視月道與赤道正交所入某宿次,即置本宿赤道全度,減去月道與赤道正交宿度,餘為正交後積度。以赤道各宿全度累加之,滿氣象限去之,為半交後。又滿去之,為中交後。再滿去之,為半交後。視各交積度,在半象限以下為初限,以上覆減象限,餘為末限。

推定差 置每交定限度,與初末限相減相乘,得數,千約之為度,即得。

推月道定積度及宿次 置月道與赤道各交後每宿積度,以定差加減之,為各交月道積度。加月道與赤道正交定宿度,共為正交後宿度。以前宿定積度減之,即得各交月道宿次。

活象限例

置正交後宿次,加前交後半交末宿定積度,為活象限。如正交後宿次度少,加前交不及數,卻置正交後宿次加氣象限即是。如遇換交之月,置正交後宿次,以前交前半交末宿定積度加之,為換交活象限。假如前交正交是軫,後交正交是角,其前交欠一軫。求活象限者,置正交後宿次,不從翼下取定積度加之,仍於軫下取定積度也。又如前交、正交是軫,後交、正交是翼,其前交多一翼。求活象限者,置正交後宿次,不從翼下取定積度加之,仍於張下取定積度也。

推相距日 置定上弦大餘,減去定朔大餘,即得。上弦至望,望至下弦,下弦至朔倣此。不及減者,加紀法減之。

推定朔弦望入盈縮曆及盈縮定差 置各月朔弦望入盈縮曆,以朔弦望加減差加減之,為定盈縮曆。視盈曆在盈初限已下為盈初限,已上用減半歲周,餘為盈末限。縮曆在縮初限已下為縮初限,已上用減半歲周,餘為縮末限。依步氣朔內求盈縮差,為盈縮定差。

推定朔弦望加時中積 置定盈縮曆,如是盈曆在朔,便為加時中積,在上弦加氣象限,在望加半歲周,在下弦加三象限。如是縮曆在朔,加半歲周,在上弦加三象限,在望便為加時中積,在下弦加氣象限,加後滿周天去之。

推黃道加時定積度 置定朔弦望加時中積,以其下盈縮定差盈加縮減之,即得。

推赤道加時定積度及宿次 置黃道加時定積度,在周天象限已下為至後,已上去之為分後,滿兩象限去之為至後,滿三象限去之為分後。置分至後黃道積度,以立成內分至後積度減之,餘以其下赤道度率乘之,如黃道度率而一,得數加入分至後積度,次以所去象限合之,為赤道加時定積度。置赤道加時定積度,加入天正冬至加時赤道日度,滿赤道積度鈐去之,得定朔弦望赤道加時宿次。

推正半中交後積度 置定朔弦望加時赤道宿次,視朔弦望在何交後,即以交後積度,在朔望加時赤道宿前一宿者加之,即為正半中交後積度,滿氣象限去之,為正半中換交。

推初末限 視正半中交後積度,在半象限已下為初限,已上覆減氣象限,餘為末限。

推月道與赤道定差 置其交定限度,與初末限相減相乘,所得,千約之為度,即定差。在正交、中交為加,在半交為減。

推正半中交加時月道定積度 置正半中交後積度,以定差加減之,為朔弦望加時月道定積度。

推定朔弦望加時月道宿次 置定朔弦望加時月道定積度,取交後月道定積度,在所置宿前一宿者減之,即得。遇轉交則前積度多,所置積度少為不及減。從半轉正,加其交活象限減之。從正轉半,從半轉中,從中轉半,皆加氣象限減之。

推夜半入轉日 置經朔弦望遲疾曆,以定朔弦望加減差加減之。在疾曆,便為定朔弦望加時入轉日。在遲曆,用加轉中置定朔弦望加時入轉日,以定朔弦望小餘減之,為夜半入轉日。遇入轉日少不及減者,加轉終減之。

推加時入轉度 置定朔弦望小餘,去秒,取夜半入轉日下轉定度乘之,萬約之為分,即得。

遲疾轉定度鈐

初日十四度六七六四七日十三度二三五三十四日十二度〇八五二二十一日十三度五七一二
一日十四度五五七三八日十二度九四七五十五日十二度二一二二二十二日十三度八五一一
二日十四度四〇二九九日十二度六九四八十六日十二度三七五二二十三日十四度〇九五五
三日十四度二一三〇十日十二度四七七七十七日十二度五七三〇二十四日十四度三〇四六
四日十三度九八七七十一日十二度二九六〇十八日十二度八〇六三二十五日十四度四七八二
五日十三度七二七一十二日十二度一四九六十九日十三度〇七五三二十六日十四度六一六三
六日十三度四四四六十三日十二度〇四六二二十日十三度三三七七二十七日十四度七一五四

推定朔弦望夜半入轉積度及宿次 置定朔弦望加時月道定積度,減去加時入轉度,為夜半積度。如朔弦望加時定積度初換交,則不及減,半正相接,用活象限,正半、中半相接,用氣象限加之,然後減加時入轉度,則正者為後半,後半為中,中為前半,前半為正。置朔弦望夜半月道定積度,依推定朔弦望加時月道宿次法減之,為夜半宿次。

推晨昏入轉日及轉度 置夜半入轉日,以定盈縮曆檢立成日下晨分加之,為晨入轉日。置其日晨分,取夜半入轉日下轉定度乘之,萬約為分,為晨轉度。如求昏轉日轉度,依法檢日下昏分,即得。

推晨昏轉積度及宿次 置朔弦望夜半月道定積度,加晨轉度,為晨轉積度。如求昏轉積度,則加昏轉度,滿氣象限去之,則換交。置晨轉積度,依前法減之,為晨分宿次,置昏轉積度,依法減之,為昏分宿次。

推相距度 朔與上弦相距,上弦與望相距,用昏轉積度。望與下弦相距,下弦與朔相距,用晨轉積度。置後段晨昏轉積度,視與前段同交者,竟以前段晨昏轉積度減之,餘為相距度。若後段與前段接兩交者,從正入半,從半入中,從中入半,加氣象限。從半入正,加活象限。然後以前段晨昏轉積度減之。若後段與前段接三交者,其內無從半入正,則加二氣象限,其內有從半入正,則加一活象限,一氣象限,以前段晨昏轉積度減之。

推轉定積度 置晨昏入轉日,以前段減後段,不及減者,加二十八日減之,為晨昏相距日。從前段下,於鈐內驗晨昏相距日同者,取其轉定積度。若朔弦望相距日少晨昏相距日一日者,則於晨昏相距日同者,取其轉積度,減去轉定極差一十四度七一五四,餘為前段至後段轉定積度。

轉定積度鈐

晨昏日距後六日距後七日距後八日
初日八十五度五六四四九十九度〇〇九〇一百十二度二四四三
一日八十四度三三二六九十七度五六七九一百一十度五一五四
二日八十三度〇一〇六九十五度九五八一一百〇八度六五二九
三日八十一度五五五二九十四度二五〇〇一百〇六度七二七七
四日八十〇度〇三七〇九十二度五一四七一百〇四度八一〇七
五日七十八度五二七〇九十〇度八二三〇一百〇二度九七二六
六日七十七度〇九五九八十九度二四五五一百〇一度二九一七
七日七十五度八〇〇九八十七度八四七一九十九度九三二三
八日七十四度六一一八八十六度六九七〇九十八度九〇九二
九日七十三度七四九五八十五度九六一七九十八度三三六九
十日七十三度二六六九八十五度六四二一九十八度二一五一
十一日七十三度一六四四八十五度七三七四九十八度五四三七
十二日七十三度四四一四八十六度二四七七九十九度三二三〇
十三日七十四度〇九八一八十七度一七三四一百〇〇度五一一一
十四日七十五度一二七二八十八度四六四九一百〇二度〇三六一
十五日七十六度三九九七八十九度九五〇九一百〇三度八〇二〇
十六日七十七度七三八七九十一度五八九八一百〇五度六八五三
十七日七十九度二一四六九十三度三一〇一一百〇七度六一〇七
十八日八十〇度七三七一九十五度〇四一七一百〇九度五一九九
十九日八十二度二三五四九十六度七一三六一百十一度三二九九
二十日八十三度六三八三九十八度二五四六一百十二度九七〇〇
二十一日八十四度九一六八九十九度六三二三一百十四度三〇七八
二十二日八十六度〇六一一一百〇度七三七五一百十五度二九四八
二十三日八十六度八八六四一百一度四四三七一百十五度八四六六
二十四日八十七度三四八二一百一度七五一一一百十五度九六四一
二十五日八十七度四四六五一百一度六五九五一百十五度六四七二
二十六日八十七度一八一三一百一度一六九〇一百十四度八九六一
二十七日八十六度五五二七一百〇度二七九八一百十三度七二四四

推加減差 以相距度與轉定積度相減為實,以其朔弦望相距日為法除之,所得視相距度多為加差,少為減差。

推每日太陰行定度 置朔弦望晨昏入轉日,視遲疾轉定度鈐日下轉定度,累日以加減差加減之,至所距日而止,即得。

推每日月離晨昏宿次 置朔弦望晨昏宿次,以每日太陰行度加之,滿月道宿次減少,即得。

赤道十二宮界宿次

亥危十二度二六一五戌奎一度五九九六酉胃三度六三七八
申畢七度一五七九未井九度〇六四〇午柳四度〇〇二一
張十四度八四〇三辰軫九度二七八四卯氐一度一一六五
寅尾三度一五四六丑斗四度〇五二八子女二度一三〇九

推月與赤道正交後宮界積度 視月道與赤道正交後,各宿積度宮界,某宿次在後,即以加之,便為某宮下正交後宮界積度。求次宮者,累加宮率三十度四三八一,滿氣象限去之,各得某宮下半交、中交後宮界積度。

推宮界定積度 視宮界積度在半象限已下為初限,已上覆減氣象限,餘為末限。置其交定限度,與初末限相減、相乘,所得,千約之為度,在正交、中交為加差,在半交為減差。置宮界正半中交後積度,以定差加減之,為宮界定積度。

推宮界宿次 置宮界定積度,於月道內取其在所置前一宿者減之,不及減者,加氣象限減之。

推每月每日下交宮時刻 置每月宮界宿次,減入交宮日下月離晨昏宿次。如不及減者,加宮界宿次前宿度減之,餘以日周乘之,以其日太陰行定度而一,得數,又視定盈縮曆取立成日下晨昏分加之。如滿日周交宮在次日,不滿在本日,依發斂推之,即交宮時刻。

步中星

推每日夜半赤道 置推到每日夜半黃道,依法以黃道積度減之,餘如黃道率而一,以加赤道積度。又以天正冬至赤道加之,如在春正後,再加一象限,夏至後加半周天,秋正後加三象限,為每日夜半赤道積度。

推夜半赤道宿度 置夜半赤道積度,以赤道宿度挨次減之,為本日夜半赤道宿度。

推晨距度及更差度 置立成內每日晨分,以三百六十六度二十五分七十五秒乘之為實,如日周而一,為晨距度。倍晨距度,以五除之,為更差度。

推每日夜半中星 置推到每日夜半赤道宿度,加半周天,即夜半中星積度。以赤道宿度挨次減之,為夜半中星宿度。

推昏旦中星 置夜半中星積度,減晨距度,為昏中星積度。以更差度累加之,為逐更及旦中星積度。俱滿赤道宿度去之,即得。以晨分五之一,加倍為更率。更率五而一為點率。凡昏分,即一更一點,累加更率為各更。凡交更即為一點,累加點率為各點。

<< < > >>

×0

社区贡献:

 报错 / 反馈

 编辑片段 提交

×